A Reversible Watermarking Model To Autheticate Medical Images Using Optimum Linear Filtering

Veena s¹, Dr. C K Narayanappa², Dr. Shivaprakash G³

¹Research scholar, MED, MRSIT.

²Asst. Prof MSRIT (MED).

³Asst Prof MSRIT(EIE).

Abstract: Recently, a major enhancement in utilization of internet based services worldwide have given rise to online medical facilities where patients can interact with doctors and medical experts and can share their details via different online platforms and applications. On the other side, medical experts too share medical details like their CT scan images, X-rays, fundus images, MRI images as well as other private and confidential information with other experts or patients on online platforms which is at risk in terms of security. Any intruder or mischief can temper these information and create problems. Thus, data authenticity and data recovery while tempering occurs are two major issues which need to be discussed. Therefore, a Reversible Watermarking Technique is presented to authenticate medical images like CT scan images, X-rays, fundus images, MRI images and to localize tempering region and to retrieve tempered region. Here, these objectives are achieved using Optimum linear filtering method which optimizes two NP-hard problems like Information Loss Minimization (ILM) Problem and Reversible Watermarking Capacity Enhancement (RWCE) Problem for Reduction of Error Estimation (REE) to enhance performance efficiency. Experimental results are carried out considering different medical images under various attacks and compared with several state-of-art-watermarking schemes in terms of PSNR, SSIM, BER and NCC.

Keywords: Reversible Watermarking, Optimum linear filtering, Reduction of Error Estimation (REE), Information Loss Minimization (ILM) Problem and Reversible Watermarking Capacity Enhancement (RWCE) Problem

1 Introduction:

Recently, the utilization of image analysis techniques and image processing have drastically enhanced, especially in case of medical applications. This techniques and diagnosis methods are immensely popular in healthcare research with the objective of providing highly efficient and faster medical facilities which can sort out medical problems conveniently [1]. Moreover, in near future, telemedicine applications can become a significant method to deliver medical facilities to the patients conveniently [2]. However, the speedy growth of several technologies in recent time such as 5G technologies, cloud storage methods, big data and cloud computing applications have affected traditional way of living to a great extent. Specifically, after the emergence of Internet of Medical Things (IoMT), there are several new diagnosis techniques and treatment methods like telemedicine applications, hierarchical diagnosis methods, internet medicine applications, online consultations and intelligent medicine have continuously emerged. However, due to emergence of these advanced diagnosis methods and treatment modes and utilization of simulated surgeries, online consultations and virtual reality for medical applications have enable doctors and medical experts to share patient's private information like MRI, CT scan, Ultrasound images over online platform. Many telemedicine applications share such as auxiliary medical equipment and documents as well for better diagnosis and effective analysis. Even, they access remote image centers and hospital image clouds, communication and image arching systems for online remote consultation and cloud reading [3]. For an instance, in tele radiology applications, doctors and medical experts share CT scan images of patients to the other medical experts or radiologists over publicly available internet network for clinical diagnosis.

However, these kind of patient data and image transmission can be dangerous and prove costly due to hacking, tempering and fraudulent until unless there is a certain protection layer to keep patient data safe. Patient data tampering can cause miscommunication and misdiagnosis [4]. Several legal and ethical problems can arise due to medical data tempering like image fraud and retention, illegal data handling and privacy issues. In 1993, a standard security measure is set by Digital Imaging and Communications in Medicine (DICOM) for the effective and protective communication as well as to handle medical image information. However, advance safety guidelines and security measures of medical data and records are not effective yet according to the modern requirements [5]. Due to this digitalized medical image data like computerized tomography (CT) scan images, X-rays, fundus images, MRI images can tempered and forged without any difficulty by the intruders. Therefore, it become necessary to authenticate medical image owners before diagnosis and sharing of medical data for clinical diagnosis to other experts over an internet platform. However, regulation and guidelines on the medical images' integrity is crucial. Thus, privacy and security has become critical issue for healthcare images.

Therefore, to sort out above mentioned issues, several digital signature approaches are introduced for image and medical data authentication which works upon cryptographic algorithms [6]. However, these methods are to recognize whether medical data or image is tempered or not.

Even, these methods cannot locate the exact region in the attacked image. Therefore, watermarking methods can be the best choice for image authentication where owners of medical images can share images or medical data after image authentication. These methods are efficient enough to perform several tasks like authentication of medical images, image tempering recognition, identification of tempering region and even able to recover tempered regions [7-8]. Generally, watermarking techniques are segregated into two parts where first one is reversible watermarking techniques and the second one is irreversible watermarking techniques. In reversible watermarking, recovery of tempered region is possible from host images without any data loss and it can be recovered as original image [9]. However, in irreversible watermarking, such facilities are not present [10]. Therefore, many experts have suggested utilization of reversible watermarking techniques [11].

Several researchers have shown immense interest for the utilization of watermarking methods to authenticate medical images. Some of the literature work has been discussed below regarding watermarking of medical images. In [12], a reversible watermarking method is adopted based on the extraction of Region of Interest (ROI) to authenticate CT scan images. Here, adopted watermarking method perform content authentication as well as copyright protection. This method reduces overhead while location map generation and ROI selection. In [13], a robust reversible watermarking method is introduced for the protection of medical images and maintain integrity with the help of image authentication. Here, recursive dither modulation (RDM) is employed to eliminate biases while diagnosis. Image authenticity is obtained by combining RDM with Slantlet transform. In [14], a fragile watermarking scheme is generated for the effective authentication of medical images and recognition of tempered location in attacked image. Here, fragile watermarking methods self-recovered lost information with high accuracy based on twohierarchical restoration method. In [15], a robust watermarking method is employed to authenticate medical data based on 3D hyperchaos and 3D dual-tree complex wavelet transform. Here, Zero embedding and blind extraction methods are also employed for the conversion of medical data into diagnosis form.

However, these watermarking methods works with spatial domain of ROI. Thus, simple embedded watermarking methods does not perform well in case of attack on medical images which can cause failure in recovery of information from tempered images. Therefore, in this article, a Reversible Watermarking Technique is employed to authenticate medical images like CT scan images, X-rays, fundus images, MRI images. Here, the proposed reversible watermarking technique minimizes optimizes two problems such as Information Loss Minimization (ILM) Problem and Reversible Watermarking Capacity Enhancement (RWCE) Problem for Reduction of Error Estimation (REE) to determine high efficiency results for authentication of medical images. Furthermore, proposed reversible watermarking technique also determine the nature of these problem and nature of their respective decision model. Here, Optimum linear filtering algorithms are utilized to optimize these problems as well as enhance efficiency of performance parameters of proposed watermarking techniques. Moreover, automatic regressive approach along with optimum linear filtering algorithm provides effective lossless compression. Experimental results verifies superiority of proposed reversible watermarking technique compare to several watermarking schemes considering different performance metrics.

This paper is presented in the following manner. Section 2, describes about the related work presented regarding authentication of medical images though watermarking schemes and their implementation issues and how those issues can be handle with the help of the proposed reversible watermarking technique. Section 3, discusses about the methodology proposed for the efficient implementation of reversible watermarking technique to increase performance efficiency. Section 4 discusses about the simulation results and their comparison with traditional watermarking schemes and section 5 concludes the paper.

2 Related Work:

Recently, e-medical applications have attracted a lot of attention by whole research community across the world and due to availability of novel commination techniques, these applications can provide several important medical services. However, in current generation, significance of protection and authentication for digitalized medical data or images is immense. Several radiologists share patient's private medical information in form of multimedia data, such as images, audio recordings, video files which require to be protected before sharing. However, watermarking methods are capable of providing facilities like medical image authentication, tempered image identification and detection of tempered region and recovery of those region as pristine image. Thus, research community has shown great interest in developing watermarking techniques for practical implementation in real-time. Some of the literatures are presented in below paragraph related to watermarking techniques.

In [16], a review article is presented based on Digital Steganography and Watermarking schemes for authentication of medical images. In this article, several papers are reviewed regrading data hiding in digitalized medical images. This article efficiently identify problems arises in Digital Steganography and Watermarking schemes. In [17], a reversible Electronic Health Records (EHR) architecture is employed based on high payload for security and authentication of Internet of Medical Things (IoMT). Here, authentication is achieved based on Left Data Mapping (LDM), encryption methods and Pixel Repetition Method (PRM). Here, temper detection and localization is also achieved. In [18], a medical image watermarking algorithm is employed for authentication of Retinal images. Here, fast curvelet transform (FCT) methods are adopted for accurate recovery of tempered regions in attacked images. In [19], a dynamic Image Steganography technique is introduced for medical and healthcare data authentication. Along with that Image Region Decomposition (IRD) algorithm is adopted for the performance metric efficiency enhancement of MRI images. In [20], a review article is presented for reversible watermarking and data hiding. This method is utilized to obtain hidden secret messages without any Bias. In this technique, transmission of data is protected with high security level. In [21], a reversible image authentication algorithm is presented based on the secret sharing method to improve medical image sharing

efficiency. Binarization operation is performed for data recovery from tempered image. In [22], a novel information hiding evaluation method is employed for medical image authentication. This technique analyses and evaluates parameters to select highly efficient watermarking and stenography algorithms. Pneumonia Chest Xray dataset is utilized for performance testing. In [23], a deep neural network based lose less watermarking algorithm is introduced for medical image authentication and data recovery. Watermarking is conducted based on the ROI of medical images. Here, three fully connected layers are used for detection of distorted regions.

However, very few techniques have minimized optimization problems to enhance performance efficiency in Bias identification which is a quite challenging and complex process. And authentication of medical images through watermarking have many challenges such as minimization of optimization problem, performance metric efficiency enhancement and image compression, leakage of confidential information, copyright protection on medical images. Therefore, reversible watermarking technique is presented for the authentication of medical images and to improve performance efficiency.

3 Modelling for Reversible Watermarking Technique:

This section discusses about the mathematical modelling of proposed reversible watermarking technique for the authentication of medical images like CT scan image, MRI images and fundus images. Here, a detailed mathematical modelling for the optimization of Information Loss Minimization (ILM) Problem and Reversible Watermarking Capacity Enhancement (RWCE) Problem for Reduction of Error Estimation (REE) is presented which is used for the performance efficiency improvement. Here, mathematical modelling regrading embedding and removal procedure of Reduction of Error Estimation (REE) using reversible watermarking technique is demonstrated in below section for performance metric efficiency enhancement in medical imaging.

3.1 Embedded method of Reduction of Error Estimation (REE):

First of all, determine the image resolution (pixel information) from cover image using image pixel estimation function. All the pixels have a steering relationship between each other. Assume that group of cover image pixels is expressed by X. Then, the pixel values of cover image are denoted by $(p_1, p_2, p_3, \dots, p_M)$ and j - th pixel value of the cover image is denoted as p_j . Total number of pixels present in the cover image are denoted by M which implies $|X| \rightarrow M$. Consider that the respective estimated pixel values are denoted as \hat{p}_j which is determined using image pixel estimation function(·) where $j = 1, 2, 3, \dots, M$. Then,

$\hat{p}_j = \text{Estimated}(X_j)$	(1)
-------------------------------------	-----

Where, X_j is determined as the subset of pixels utilized to estimate j - th pixel value i.e. $X_j \subseteq X$. Generally, X_j contains pixels adjacent to the j - th pixel and precise location of associate pixels depends upon the image pixel estimation function. Further, determined the estimation error g_j with respect to p_j as follows,

$$g_j = p_j - \hat{p}_j \tag{2}$$

Then, determine the histogram of estimated errors g_j . Here, the histogram of estimated errors are evaluated by dividing group of estimated errors where every group precisely belongs to value of one pixel estimated error respectively. Every estimated error value R(i) of the partition is the cardinality of group of pixel estimated error values i for histogram evaluation, where R(i) lies in the range $0 \le R(i) \le M$. Then,

$$R(i) = |\{g_j : g_j = i, j = 1, 2, 3, ..., M\}|$$
(3)

Where, cardinality of group H is expressed by |H|. For an instance, an 8 bit gray scale image with a resolution of 512 × 512, cardinality lies in a range of $0 \le R(i) \le 262144$. Then, apply embedded method by shifting of estimated errors g_i ,

$$g'_{j} = 2g_{j} + c \text{ if } g_{j} \in [-L, L]$$
 (4)

Then, by simplifying equation (4), we get,

$$g'_{j} = g_{j} + c \text{ if } g_{j} \in [L, +\infty]$$

$$g'_{j} = g_{j} - L \text{ if } g_{j} \in [-\infty, -L]$$
(5)

Where, c is watermark bit which need to be embedded for j = 1,2,3, ..., M and lies in the range $c \in \{0,1\}$. Here, L is expressed as the threshold embedded coefficient to handle the embedded capacity. Then, the estimated errors which lies in the range [-L, L) are extended for embedding of estimated errors to obtain histogram of estimated errors. Moreover, the estimated errors outside the mentioned range are discarded and shifted outside of their neighborhood. Lastly, the improvised error g'_j is summed with estimated pixel value \hat{p}_j to obtain watermarked pixel series p'_j ,

$p'_i = \hat{p}_i +$	י סו	(6)
· · · · · ·		

3.2 Retrieval Method of Reduction of Error Estimation (REE):

Webology (ISSN: 1735-188X) Volume 18, Number 6, 2021

By using similar estimation method, the estimated value \hat{p}'_j to every watermarked pixel p'_j respectively for $j = 1,2,3, \dots, M$ is determined by,

$$\widehat{\mathbf{p}}_{1}^{\prime} = \text{Estimated}\left(\mathbf{X}_{1}^{\prime}\right) \tag{7}$$

Where, X'_j contains pixels adjacent to the j – th watermarked pixel i.e. p'_j . Then, the estimated error g'_j for j = 1,2,3, ..., M determined by following equation,

$g'_j = p'_j - \widehat{p'_j}$	(8)

Then, the original estimated error recovered from watermarked estimated error for j = 1,2,3,...,M is given by following equation,

$g_j = [g'_j/2]$ if $g'_j \in [-2L, 2L]$	(9)
$g_j = g'_j - c \text{ if } g'_j \in [2L, +\infty]$	
$g_j = g'_j + L$ if $g'_j \in [-\infty, -2L]$	

Then, retrieved pixels of cover image for j = 1, 2, 3, ..., M is given by following equation,

$$p_j = \widehat{p}'_j - g_j \tag{10}$$

Lastly, the watermark bits retrieved as,

$c = g'_j - 2 \left \frac{g'_j}{2} \right $ if $g'_j \in [-2L, 2L)$ (11)	
---	--

3.3 Mean Bias for Reduction of Error Estimation (REE):

In above section it discussed that estimated errors lies in the range [-L, L) for Reduction of Error Estimation (REE) mechanism obtained with the help of proposed reversible watermarking technique are extended and then permitted to embed watermark bits. Then, embedding capacity is expressed as,

$$D = \sum_{i=-L}^{L-1} R(i)$$
 (12)

Where, R is expressed as histogram of estimated error and R(i) is represented as the total number of incidence of estimated error i. Then, after embedding, estimated errors g_j which lies in the range [-L, L) may have Bias to a minor extent. The Bias presence rely upon the type of watermarked used. However, due to continuous shifting, estimated errors g_j which are placed outside the range of [-L, L) i.e. $g_j \in (-\infty, -L) \cup [L, \infty)$ have a fixed Bias. The magnitude of fixed Bias of estimated errors g_j in the range $g_j \in (-\infty, -L) \cup [L, \infty)$ is denoted as L. Then, after square of Bias in estimated error is given by,

$N(p_{j}, p_{j}') = p_{j} - p_{j}' ^{2}$	(13)

Then, mean Bias of estimated error for j - th pixel is represented by following equation,

$$N(p_{j}, p_{j}') = \|p_{j} - p_{j}'\|^{2} = \|e_{j} - e_{j}'\|^{2}$$

$$= \begin{cases} \frac{1}{2} \sum_{c \in \{0,1\}} (g_{j} + c)^{2} = g_{j}^{2} + g_{j} + \frac{1}{2} & \text{if}g_{j} \in [-L, L) \\ L^{2} & \text{otherwise} \end{cases}$$
(14)

Therefore, the mean Bias is given by,

$$N_{\text{mean}} = \sum_{i=-L}^{L-1} \left(i^2 + i + \frac{1}{2} \right) R(i) + \left(\sum_{i=-\infty}^{-L-1} R(i) + \sum_{i=L}^{+\infty} R(i) \right) L^2$$
(15)

Here, it is evident that in embedding considering case of watermarking or reversible watermarking, the Bias and capacity remain similar for the histogram values of estimated errors. However, their respective weights can be changed.

3.4 Optimization of Information Loss Minimization (ILM) Problem:

Here, optimum linear filtering methods are adopted to optimize Information Loss Minimization (ILM) Problem. Then, ILM problem is formulated in following way,

 $\min(c_1 p_1 + c_2 p_2 + \dots + c_M p_M)$ (16)

Where, the coefficients c_j , h_{je} , p_j need to be evaluated and here, $I_j \in Y$ for j = 1,2,3, ..., M. Then, the Information Loss Minimization (ILM) problem for Reduction of Error Estimation (REE) using reversible watermarking and optimum linear filtering method is given by,

min N_{mean} , subject to: $D - d \ge 0$	(17)
--	------

Where, d represents a positive constant coefficient which demonstrates size of payload and embedding capability of cover image is given by D. Then, after multiplying the average function by 2 gives,

min
$$2N_{\text{mean}}$$
, subject to: $D - d \ge 0$ (18)

Then, assume a specific range as $[-L_{\infty}, L_{\infty}]$ for histogram of estimated errors where $-L_{\infty}$ and L_{∞} are threshold limits of embedding operation. Consider that the real threshold limits for embedding operation is [-L, L). Then, embedding capability D of estimated error values is represented as the linear arrangement for histogram values of estimated errors. Then, mean Bias is represented as the shifted histogram values of estimated errors with fixed Bias. Thus,

$$D = \sum_{j=-L_{\infty}}^{L_{\infty}} d_j R(j) \text{ and } 2N_{\text{mean}} = \sum_{j=-L_{\infty}}^{L_{\infty}} n_j R(j)$$
⁽¹⁹⁾

Further, compare above expressions in equation (19) with equation (12) and equation (14),

$$d_{j} = \begin{cases} 1 & \text{if } j \in [-L, L) \\ 0 & \text{otherwise} \end{cases}$$
(20)

And,

$$n_{j} = \begin{cases} 2j^{2} + 2j + 1\\ 2L^{2} & \text{otherwise} \end{cases}$$
(21)

(22)

Where, the coefficients d_j and n_j lies in a range d_j , $n_j \in [0, \infty]$. Then, these coefficients are evaluated for a threshold embedding coefficient L in polynomial time. Therefore, ILM problem is minimized by placing values of equation (22) in equation (16),

 $\begin{array}{rl} c_{j}=\ n_{j}\\ \\ h_{1j}=\ d_{j}\\ \\ h_{jj}=\ 1 & 2\leq j\leq M\\ \\ h_{je}=\ 0 & 2\leq j\leq M, j\neq e\\ \\ p_{j}=R(j)\\ \\ I_{1}=d\\ \\ I_{j}=\ 0 & 2\leq j\leq M \end{array}$

As the substitution of values in equation (16) take place in polynomial time. Therefore, Information Loss Minimization (ILM) Problem is NP-hard problem as well as their decision model also contain NP-hard problem.

3.5 Optimization of Reversible Watermarking Capacity Enhancement (RWCE) Problem:

Here, optimum linear filtering method is analysed as well as their complexity. Assume that there are m items, the filtering capacity is denoted by F, and then the value of j - th item is w_j and their respective weight is v_j . Here, all the coefficients w_j , v_j and F are integers. Then, Reversible Watermarking Capacity Enhancement (RWCE) Problem can be formulated by following equation,

$$\max \sum_{j=1}^{m} w_j p_j$$
Such that: $\sum_{j=1}^{m} v_j p_j \le F$, $p_j \in \{0\} \cup \mathbb{Q}^+$

$$(23)$$

Where, the coefficient p_j lies in a range $p_j \in [0, \infty]$ and utilized to magnify the value of objective function for j - th item. Then, the Reversible Watermarking Capacity Enhancement (RWCE) problem for Reduction of Error Estimation (REE) using reversible watermarking and optimum linear filtering method is given by,

max D, subject to:
$$N_{mean} - n \le 0$$
 (24)

Where, d represents a positive constant coefficient which demonstrates Bias limit. Then, after multiplying the Bias limit function by 2 gives,

max D, subject to:
$$2N_{mean} - 2n \le 0$$
 (25)

Then, embedding capability D and mean Bias N_{mean} of estimated error values is represented as the linear arrangement for histogram values of estimated errors. Here, the coefficients d_j and n_j are evaluated from equation (20) and (21). Moreover, it is evident that the histogram values of estimated errors R(j) which lies in the range $j \in (-L_{\infty}, -L) \cup [L, L_{+\infty})$ are not able to contribute to the embedding capability D. However, they produces a fixed Bias of $2L^2$ to the mean Bias N_{mean} . Then, maximization of embedding capability D for a fixed Bias of $2L^2$ is given by,

$$R(j) = 0 \quad \not\cong \forall_j \in (-L_{\infty}, -L) \cup [L, L_{+\infty})$$
(26)

Therefore, the embedding capability D and mean Bias N_{mean} is simplified by following equation,

$$D = \sum_{j=-L}^{L-1} d_j R(j) \text{ and } 2N_{mean} = \sum_{j=-L}^{L-1} n_j R(j)$$
(27)

Thus, Optimization of Reversible Watermarking Capacity Enhancement (RWCE) Problem is achieved as,

$$\max \sum_{j=-L}^{L-1} d_j R(j)$$
 (28)
Such that: $\sum_{j=-L}^{L-1} n_j R(j) \le 2n$

Then, then the RWCE Problem is minimized as,

$p_{j} = R(j),$	$w_i = d_i, v_i = n_i,$	F = 2n	(29)
_ _ _ .	, , , ,		

The change take place in polynomial time. Therefore, Reversible Watermarking Capacity Enhancement (RWCE) Problem is NP-hard problem as well as their decision model also contain a NP-hard problem.

4 Result and Discussion:

This section discusses about the performance results of the proposed reversible watermarking technique based on Optimum linear filtering algorithms and compared with several state-of-art-watermarking techniques. Here, proposed reversible watermarking technique minimizes Information Loss Minimization (ILM) Problem for Reduction of Error Estimation (REE) as well as determines nature of problem as NP-hard problem to improve the efficiency of the model. Similarly, the proposed model also minimizes Reversible Watermarking Capacity Enhancement (RWCE) Problem for REE to enhance performance efficiency and nature of the problem is determined as NP-hard problem. Here, modelling for embedding and retrieval of REE as well as amount of Bias occur between both the processes are determined. Along with that optimization of the ILM and RWCE problem is achieved based on Optimum linear filtering algorithm which improves performance efficiency of proposed reversible watermarking technique.

The performance of proposed reversible watermarking is tested on several medical images like MRI images, Fundus images and CT scan image which are utilized as cover images in watermarking process. Here, proposed reversible watermarking technique efficiently authenticate medical image by fusing cover image with watermarked image. Along with that, proposed model precisely identify localization of tempered region in case of various attacks as well as recover tempered information as original image after attacks. Therefore, proposed reversible watermarking technique is capable of handling different functionalities with improved efficiency results compare to various state-of-art-watermarking technique. Performance efficiency of the proposed model is evaluated based on the performance metrics like Peak Signal to Noise Ratio (PSNR), Structure Similarity Measure Index (SSIM), Bit Error Rate (BER) and Normalized Cross Correlation (NCC). Furthermore, mean of these performance metrics for varied medical images are evaluated to compare with several traditional watermarking techniques under various attacks. These attacks are Average Filtering (AF), Gaussian Blurring (GB), Gaussian Noise (GN), JPEG compression (JC), JPEG2000 compression, Median Filtering (MF), Cropping from image edges (CR), Salt and Pepper Noise (SN), Resizing (RS) and Weiner Filtering (WF). All these attacks have their own different evaluation parameters to determined performance metric results under their respective attack and then, compared with traditional watermarking algorithms.

Here, Table 1 demonstrates mean results considering PSNR and SSIM using proposed reversible watermarking algorithms and compared against several traditional watermarking methods like Maheshakar et. al [24], Thabit et. al [25], Lei.et.al [26], Thabit et. al. [27], Xiyao et.

al. [13]. The mean PSNR evaluated using proposed reversible watermarking technique is 56.5604. Here, PSNR results obtained from proposed model is slightly higher than Maheshakar et. al [24] and Thabit et. al [25] whereas proposed model is comparatively better than Lei.et.al [26], Thabit et. al. [27] and Xiyao et. al. [13] in terms of PSNR. Similarly, mean SSIM result using proposed reversible watermarking technique under various attacks is 0.9991. Mean SSIM obtained using proposed model outperforms all the traditional techniques such as Maheshakar et. al [24], Thabit et. al [25], Lei.et.al [26], Thabit et. al. [27], Xiyao et. al. [13]. The reason behind high performance is the utilization of Optimum linear filtering algorithm to minimize ILM and RWCE problem. Results demonstrated considering mentioned performance metrics for authenticity measure, temper localization measure and temper retrieval under various attacks concludes the superiority of proposed reversible watermarking technique and proposed model outperforms all the traditional watermarking methods in terms of PSNR, SSIM, BER and NCC.

Algorithms	PSNR	SSIM
Maheshakar et. al [24]	39.7522	0.9669
Thabit et. al [25]	40.1841	0.9607
Lei.et.al [26]	41.5525	0.9660
Thabit et. al. [27]	42.8972	0.9670
Xiyao et. al. [13]	41.2995	0.9607
Proposed Reversible	51.1604	0.9991
Watermarking		

Table 1 mean PSNR and mean SSIM Results comparison with various state-of-art-watermarking techniques

Furthermore, 10 types of common different attacks are demonstrated in Table 2 to test the efficiency and robustness of proposed reversible watermarking technique. Furthermore, proposed reversible watermarking technique is compared against five traditional watermarking algorithms [24], [25], [26], [27] and [13] to conclude imperceptibility and robustness of proposed model. Performance metrics like mean NCC and mean BER are evaluated under various conditions like in case of data authenticity, temper localization and temper recovery which is demonstrated in Table 3, Table 4 and Table 5. Here, Table 3 shows all the mean NCC results are nearly 1 and all the mean BER results are nearly 0 under the condition of data authenticity considering various attacks. Table 3 demonstrates reliable authenticity results compare to several traditional watermarking methods. Furthermore, the average of mean NCC value obtained under all attacks using proposed model is **0.9787** is higher compare to traditional watermarking methods like Maheshakar et. al [24], Thabit et. al [25], Lei.et.al [26], Xiyao et. al. [13] which obtain NCC results as 0.9322, 0.9362, 0.8702 and 0.9562. Similarly, the average of mean BER value obtained under all attacks using proposed model is **0.0114** is lower compare to traditional watermarking methods

like Maheshakar et. al [24], Thabit et. al [25], Lei.et.al [26], Xiyao et. al. [13] which obtain BER results as 0.0927, 0.0711, 0.1003 and 0.0462.

Here, Table 4 shows all the mean NCC results are nearly 1 and all the mean BER results are nearly 0 under the condition of temper localization considering various attacks. Table 4 demonstrates reliable temper localization results compare to several traditional watermarking methods. Furthermore, the average of mean NCC value obtained under all attacks using proposed model is **0.9967** is higher compare to traditional watermarking methods like Maheshakar et. al [24], Thabit et. al [25], Lei.et.al [26], Xiyao et. al. [13] which obtain NCC results as 0.9322, 0.9362, 0.8702 and 0.9562. Similarly, the average of mean BER value obtained under all attacks using proposed model is **0.0148** is lower compare to traditional watermarking methods like Maheshakar et. al [24], Thabit et. al [25], Lei.et.al [26], Xiyao et. al. [13] which obtain BER results as 0.0927, 0.0711, 0.1003 and 0.0462.

Attack Type	Attack Type Parameters		Parameters	
Average Filtering	Window= $3x3,5x5$	Median Filtering	Window= $3x3,5x5$	
(AF)		(MF)		
Gaussian Blurring	Gaussian Blurring Window=3x3,		5%, 10% and 20%	
(GB)	variance=0.5,1	image edges (CR)		
Gaussian Noise (GN) Variance= 0.0001,		Salt and Pepper	Density =	
	Mean=	Noise (SN)	0.001,0.003,	
	0.001,0.003,0.0005		0.0005	
JPEG compression	Quality = 70,80	Resizing (RS)	0.8,1.2	
(JC)				
JPEG2000	JPEG2000 Compression Ratio=		Window= 3x3,5x5	
compression	4,8	(WF)		

Table 2 Attacks with Parameters

Here, Table 5 shows all the mean NCC results are nearly 1 and all the mean BER results are nearly 0 under the condition of temper information retrieval considering various attacks. Table 5 demonstrates reliable temper information retrieval results compare to several traditional watermarking methods. Furthermore, the average of mean NCC value obtained under all attacks using proposed model is **0.9967** is higher compare to traditional watermarking methods like Maheshakar et. al [24], Thabit et. al [25], Lei.et.al [26], Xiyao et. al. [13] which obtain NCC results as 0.9322, 0.9362, 0.8702 and 0.9562. Similarly, the average of mean BER value obtained under all attacks using proposed model is **0.0144** is lower compare to traditional watermarking methods like Maheshakar et. al [24], Thabit et. al [25], Lei.et.al [26], Xiyao et. al. [13] which obtain BER value obtained under all attacks using proposed model is **0.0144** is lower compare to traditional watermarking methods like Maheshakar et. al [24], Thabit et. al [25], Lei.et.al [26], Xiyao et. al. [13] which obtain BER value obtained under all attacks using proposed model is **0.0144** is lower compare to traditional watermarking methods like Maheshakar et. al [24], Thabit et. al [25], Lei.et.al [26], Xiyao et. al. [13] which obtain BER value obtained under all attacks using proposed model is **0.0144**.

The reason behind high performance efficiency under all three scenarios is efficient embedding and retrieval process of REE and optimization of the ILM and RWCE problem using Optimum linear filtering algorithm. However, mean NCC and mean BER under data authenticity are slightly higher which are demonstrated in Table 3 than the mean NCC and mean BER under temper localization and temper information retrieval which are demonstrated in Table 4 and Table 5 respectively. It is evident from the performance metric result of Table 1, Table 3, Table 4 and Table 5 that all the result of performance metrics outperforms above mentioned state-of-artwatermarking techniques in terms of PSNR, SSIM, BER and NCC under all three scenarios as for data authenticity, temper localization and temper information retrieval. Along with that, Figure 1 demonstrates the visual representation of original medical images and watermarked medical images. Here, total five types of medical images are taken to evaluate performance results of proposed reversible watermarking technique. There are total number of 200 images are present in the dataset in which the number of CT scan images are 40, MRI images are 40, X-ray images are 40, fundus image are 40 and remaining 40 images are Ultrasound images. Here, five type of varied medical images are watermarked using a hospital logo with a pixel resolution of 256 \times 256. This hospital logo image is utilized as authenticity data as demonstrated in Figure 1. Furthermore, the superiority of proposed reversible watermarking technique is evident from visual representation results of Figure 1.

	Mahe	shaka	That	oit et.	Lei.	et.al	That	oit et.	Xiya	o et.	Pro	posed
Attacks	r et. a	r et. al [24]		al [25]		[26]		ıl. [27] al. [13]		Μ	odel	
	BE	NC	BE	NC	BE	NC	BE	NC	BE	NC	BE	NCC
	R	С	R	С	R	С	R	С	R	C	R	
AF (3x3)	0.10	0.88	0.06	0.94	0.14	0.81	0.01	0.98	0.07	0.96	0.00	0.984
	71	68	22	63	85	32	46	44	05	04	83	1
AF(5x5)	0.24	0.78	0.33	0.69	0.26	0.69	0.14	0.85	0.13	0.89	0.00	0.988
	25	31	53	53	59	55	24	43	71	78	60	3
MF(3x3)	0.08	0.99	0.05	0.95	0.10	0.85	0.01	0.98	0.04	0.97	0.01	0.974
	66	15	39	49	39	57	62	23	57	59	33	9
MF(5x5)	0.23	0.79	0.38	0.65	0.21	0.73	0.21	0.77	0.10	0.92	0.01	0.980
	53	34	07	38	70	69	38	93	98	15	03	3
GB (0.5)	0.01	0.97	0.00	1.00	0.02	0.97	0.00	1.00	0.00	0.99	0.03	0.944
	62	97	00	00	17	80	00	00	94	37	11	2
GB (1)	0.10	0.87	0.04	0.95	0.16	0.79	0.00	0.99	0.09	0.94	0.03	0.944
	64	33	91	85	71	63	31	65	14	22	11	1
CR (5%)	0.03	0.98	0.00	0.99	0.05	0.90	0.01	0.98	0.00	1.00	0.03	0.944
	61	79	58	56	26	81	38	16	00	00	10	3
CR (10%)	0.07	0.98	0.01	0.98	0.10	0.80	0.06	0.89	0.00	1.00	0.01	0.977
	93	44	30	36	51	61	10	80	00	00	20	3

Table 3 the mean BERs and NCCs of authenticity data under various attacks

CR (20%)	0.15	0.98	0.04	0.94	0.19	0.64	0.15	0.76	0.06	0.98	0.01	0.973
	38	42	24	55	07	02	58	43	44	03	41	6
GN (0.001)	0.07	0.92	0.00	0.99	0.05	0.93	0.00	0.99	0.01	0.98	0.01	0.978
	22	73	01	93	78	57	11	90	17	85	16	1
GN(0.003)	0.07	0.92	0.00	0.99	0.17	0.81	0.00	0.99	0.07	0.90	0.00	0.986
	30	68	09	93	79	16	12	89	21	16	70	4
GN(0.005)	0.07	0.92	0.00	0.99	0.20	0.78	0.00	0.99	0.13	0.87	0.00	0.982
	33	60	11	91	72	18	13	87	49	23	92	4
SN(0.001)	0.05	0.97	0.02	0.97	0.02	0.93	0.00	0.99	0.02	0.97	0.00	0.987
	65	91	42	86	20	86	51	50	82	44	67	0
SN(0.003)	0.06	0.96	0.06	0.93	0.06	0.93	0.01	0.98	0.07	0.93	0.01	0.970
	91	42	84	99	11	86	42	55	58	06	60	3
SN(0.005)	0.08	0.94	0.10	0.91	0.09	0.90	0.02	0.97	0.12	0.88	0.00	0.991
	08	93	13	00	71	23	40	58	46	66	44	3
JC (Q=70)	0.10	0.97	0.12	0.88	0.01	0.98	0.04	0.98	0.00	0.99	0.00	0.996
	62	00	94	06	55	42	22	51	61	39	18	5
JC(Q=80)	0.09	0.97	0.04	0.95	0.00	0.99	0.00	0.99	0.00	0.99	0.00	0.998
	40	21	70	77	48	55	25	70	32	82	09	1
JPEG2000	0.04	0.97	0.00	0.99	0.00	0.99	0.00	0.99	0.00	0.99	0.00	0.996
(4)	75	55	12	88	21	79	44	61	23	93	16	7
JPEG2000	0.08	0.95	0.02	0.98	0.02	0.96	0.04	0.96	0.01	0.98	0.00	0.998
(8)	51	39	27	19	39	16	01	38	33	74	07	6
RS (0.8)	0.02	0.96	0.00	0.99	0.02	0.96	0.00	0.99	0.00	0.99	0.01	0.969
	65	83	35	75	55	54	01	99	57	72	64	6
RS (1.2)	0.00	0.99	0.00	1.00	0.00	0.99	0.00	1.00	0.00	0.99	0.01	0.974
	80	06	01	00	69	34	00	00	10	88	37	3
WF (3x3)	0.07	0.92	0.05	0.96	0.10	0.86	0.01	0.98	0.01	0.99	0.00	0.981
	87	03	39	62	00	29	30	71	22	35	96	5
WF (5x5)	0.19	0.83	0.23	0.79	0.23	0.72	0.07	0.92	0.07	0.94	0.00	0.989
	77	20	47	11	33	80	04	50	57	12	56	1
Average	0.09	0.93	0.07	0.93	0.10	0.87	0.03	0.95	0.04	0.96	0.01	0.978
	27	22	11	62	03	02	65	86	76	24	14	7

Table 4 the mean BERs and NCCs of tamper localization information under various attacks.

Attacks r et. al		shaka	Thabit et.		Lei.et.al		Thabit et.		Xiyao et.		Proposed	
		d [24]	al [25]		[26]		al. [27]		al. [13]		Model	
	BE R	NC C	BE R	NC C	BE R	NC C	BE R	NC C	BE R	NC C	BE R	NCC

AF (3x3)	0.49	0.50	0.47	0.51	N/A	N/A	N/A	N/A	0.04	0.95	0.01	0.991
	57	41	07	34					78	41	16	8
AF(5x5)	0.50	0.50	0.48	0.50	N/A	N/A	N/A	N/A	0.14	0.85	0.01	0.984
	18	06	52	01					22	25	39	6
MF(3x3)	0.32	0.66	0.42	0.56	N/A	N/A	N/A	N/A	0.02	0.96	0.00	0.999
	59	95	20	41					50	87	55	0
MF(5x5)	0.56	0.56	0.53	0.50	N/A	N/A	N/A	N/A	0.10	0.89	0.01	0.994
	66	32	49	07					38	00	08	1
GB (0.5)	0.44	0.55	0.01	0.98	N/A	N/A	N/A	N/A	0.00	0.99	0.05	0.999
	13	81	32	62					41	44	19	3
GB (1)	0.49	0.50	0.20	0.79	N/A	N/A	N/A	N/A	0.06	0.93	0.04	0.999
	69	28	30	07					81	22	32	3
CR (5%)	0.01	0.97	0.02	0.96	N/A	N/A	N/A	N/A	0.00	1.00	0.05	0.999
	24	39	23	61					00	00	45	3
CR (10%)	0.03	0.92	0.05	0.90	N/A	N/A	N/A	N/A	0.00	1.00	0.02	0.999
	47	73	49	97					00	00	09	0
CR (20%)	0.08	0.83	0.16	0.78	N/A	N/A	N/A	N/A	0.06	0.89	0.01	0.999
	12	20	68	27					27	01	99	3
GN (0.001)	0.49	0.50	0.11	0.88	N/A	N/A	N/A	N/A	0.01	0.99	0.01	0.999
	77	18	01	43					03	48	24	8
GN(0.003)	0.49	0.50	0.11	0.88	N/A	N/A	N/A	N/A	0.05	0.98	0.01	0.999
	79	17	02	39					87	68	63	5
GN(0.005)	0.49	0.50	0.11	0.88	N/A	N/A	N/A	N/A	0.13	0.93	0.00	0.991
	99	13	12	30					95	29	99	7
SN(0.001)	0.00	0.99	0.02	0.97	N/A	N/A	N/A	N/A	0.03	0.96	0.01	0.983
	06	94	61	10					58	51	33	1
SN(0.003)	0.00	0.99	0.06	0.93	N/A	N/A	N/A	N/A	0.09	0.90	0.00	1.000
	15	86	49	03					70	31	35	0
SN(0.005)	0.00	0.99	0.09	0.89	N/A	N/A	N/A	N/A	0.13	0.85	0.00	1.000
	26	73	59	76					97	21	32	0
JC (Q=70)	0.49	0.50	0.41	0.57	N/A	N/A	N/A	N/A	0.00	0.99	0.00	1.000
	60	36	30	06					57	65	29	0
JC(Q=80)	0.49	0.50	0.35	0.62	N/A	N/A	N/A	N/A	0.00	0.99	0.00	0.997
	31	66	64	93					41	75	41	0
JPEG2000	0.28	0.71	0.06	0.92	N/A	N/A	N/A	N/A	0.00	0.99	0.00	0.991
(4)	86	07	82	96					15	85	51	9
JPEG2000	0.45	0.54	0.25	0.73	N/A	N/A	N/A	N/A	0.00	0.99	0.00	0.998
(8)	65	33	27	59					88	56	39	5

Webology (ISSN: 1735-188X) Volume 18, Number 6, 2021

RS (0.8)	0.47	0.52	0.09	0.89	N/A	N/A	N/A	N/A	0.00	0.99	0.00	1.000
	09	88	80	94					26	73	34	0
RS (1.2)	0.40	0.59	0.01	0.98	N/A	N/A	N/A	N/A	0.00	0.99	0.00	0.999
	09	88	75	19					08	92	39	9
WF (3x3)	0.49	0.66	0.42	0.56	N/A	N/A	N/A	N/A	0.01	0.98	0.01	0.999
	08	95	20	97					13	68	16	1
WF (5x5)	0.50	0.56	0.43	0.55	N/A	N/A	N/A	N/A	0.09	0.90	0.01	0.998
	07	32	45	05					29	43	40	3
Average	0.35	0.65	0.21	0.77	N/A	N/A	N/A	N/A	0.04	0.95	0.01	0.996
	02	90	54	52					62	62	48	7

Table 5 the mean BERs and NCs of tamper recovery information under various attacks.

	Mahe	shaka	That	oit et.	Lei.	et.al	Thał	oit et.	Xiya	o et.	Pro	posed
Attacks	r et. a	al [24]	al [25]		[2	6]	al.	[27]	al.	[13]	Μ	odel
	BE	NC	BE	NC	BE	NC	BE	NC	BE	NC	BE	NCC
	R	С	R	С	R	С	R	С	R	С	R	
AF (3x3)	0.10	0.89	0.42	0.48	0.14	0.81	0.01	0.98	0.03	0.95	0.01	0.992
	43	09	40	13					97	92	16	5
AF(5x5)	0.23	0.78	0.47	0.43	N/A	N/A	N/A	N/A	0.15	0.84	0.01	0.984
	77	64	40	37					08	90	39	6
MF(3x3)	0.08	0.91	0.37	0.53	N/A	N/A	N/A	N/A	0.02	0.97	0.00	0.998
	38	62	24	90					54	26	57	9
MF(5x5)	0.23	0.79	0.47	0.43	N/A	N/A	N/A	N/A	0.11	0.88	0.01	0.993
	00	74	85	32					14	36	08	9
GB (0.5)	0.01	0.98	0.01	0.97	N/A	N/A	N/A	N/A	0.00	0.99	0.05	0.999
	54	15	63	59					44	63	06	5
GB (1)	0.10	0.87	0.22	0.72	N/A	N/A	N/A	N/A	0.06	0.94	0.04	0.999
	46	81	02	00					07	02	17	4
CR (5%)	0.03	0.98	0.03	0.93	N/A	N/A	N/A	N/A	0.00	1.00	0.05	0.999
	48	74	29	57					00	00	33	5
CR (10%)	0.07	0.98	0.08	0.83	N/A	N/A	N/A	N/A	0.00	1.00	0.01	0.999
	59	52	49	20					00	00	96	0
CR (20%)	0.14	0.98	0.21	0.69	N/A	N/A	N/A	N/A	0.04	0.91	0.01	0.999
	90	45	00	19					98	83	86	4
GN (0.001)	0.06	0.93	0.10	0.85	N/A	N/A	N/A	N/A	0.00	0.99	0.01	0.999
	66	27	43	40					59	50	20	9
GN(0.003)	0.06	0.93	0.12	0.85	N/A	N/A	N/A	N/A	0.05	0.98	0.01	0.999
	70	23	00	38					98	60	59	6

Webology (ISSN: 1735-188X) Volume 18, Number 6, 2021

GN(0.005)	0.06	0.93	0.12	0.85	N/A	N/A	N/A	N/A	0.10	0.94	0.00	0.991
	77	15	50	31					10	86	99	6
SN(0.001)	0.05	0.98	0.02	0.95	N/A	N/A	N/A	N/A	0.03	0.95	0.01	0.983
	35	02	79	84					90	99	32	1
SN(0.003)	0.06	0.96	0.06	0.89	N/A	N/A	N/A	N/A	0.10	0.89	0.00	1.000
	62	51	92	99					56	35	39	0
SN(0.005)	0.07	0.95	0.07	0.84	N/A	N/A	N/A	N/A	0.15	0.83	0.00	1.000
	82	08	50	98					52	73	31	0
JC (Q=70)	0.09	0.97	0.37	0.53	N/A	N/A	N/A	N/A	0.00	0.99	0.00	1.000
	74	16	85	37					43	46	28	0
JC(Q=80)	0.08	0.97	0.30	0.61	N/A	N/A	N/A	N/A	0.00	0.99	0.00	0.997
	65	32	87	47					31	57	35	0
JPEG2000	0.04	0.97	0.07	0.93	N/A	N/A	N/A	N/A	0.00	0.99	0.00	0.992
(4)	52	74	50	51					20	69	46	0
JPEG2000	0.07	0.95	0.26	0.72	N/A	N/A	N/A	N/A	0.00	0.99	0.00	0.998
(8)	89	64	50	58					58	41	33	5
RS (0.8)	0.02	0.97	0.10	0.86	N/A	N/A	N/A	N/A	0.00	0.99	0.00	1.000
	49	05	71	45					29	75	39	0
RS (1.2)	0.00	0.99	0.02	0.97	N/A	N/A	N/A	N/A	0.00	0.99	0.00	1.000
	75	15	13	04					07	92	42	0
WF (3x3)	0.07	0.92	0.41	0.51	N/A	N/A	N/A	N/A	0.01	0.98	0.01	0.999
	61	33	00	87					12	67	17	0
WF (5x5)	0.19	0.83	0.41	0.49	N/A	N/A	N/A	N/A	0.10	0.88	0.01	0.998
	32	36	61	27					99	73	40	2
Average	0.08	0.93	0.20	0.73	N/A	N/A	N/A	N/A	0.04	0.95	0.01	0.996
	89	46	49	77					56	62	44	7

Figure 1 Examples of evaluating the watermarking imperceptibility. First row shows original medical images, second rows shows watermarked medical images.

5 Conclusion:

The importance of watermarking schemes while diagnosis and sharing with other radiologists or experts is extremely high due to possibility of patient's data tempering. Therefore, a Reversible Watermarking Technique is employed to authenticate medical images like CT scan images, Xrays, fundus images, MRI in this article. Highly efficient watermarking is achieved with the help of Optimum linear filtering algorithms. First of all, embedding for Reduction of Error Estimation (REE) is achieved and then pixels of cover images are retrieved as original for Reduction of Error Estimation (REE) and then Bias occur between both the processes are evaluated using Optimum linear filtering methods. Along with that, the proposed reversible watermarking scheme optimizes Information Loss Minimization (ILM) Problem and Reversible Watermarking Capacity Enhancement (RWCE) Problem and also determines nature of the problem as NP-hard. Thus, performance efficiency of proposed watermarking model is improved due to reduction of complexity and NP-hard problem. A detailed mathematical modelling to achieve highly efficient reversible watermarking is presented. Furthermore, Average of mean SSIM value obtained under all attacks using proposed model is 0.9991 and mean PSNR is 51.1604 which is higher than several state-of-art-watermarking techniques. All the result of performance metrics outperforms above mentioned state-of-art-watermarking techniques in terms of PSNR, SSIM, BER and NCC under all three scenarios as for data authenticity, temper localization and temper information retrieval.

References:

[1]	Q. Yao, Y. Tian, PF. Li, LL. Tian, YM. Qian, and JS. Li, ``Design and
	development of a medical big data processing system based on Hadoop," J. Med. Syst.,
	vol. 39, no. 3, pp. 1_11, Feb. 2015.
[2]	J. C. Dagadu and J. Li, ``Context-based watermarking cum chaotic encryption for
	medical images in telemedicine applications," Multimedia Tools Appl., vol. 77, no. 18,
	pp. 24289_24312, 2018.
[3]	A. Bakshi and A. K. Patel, ``Secure telemedicine using RONI halftoned visual
	cryptography without pixel expansion," J. Inf. Secur. Appl., vol. 46, pp. 281_295, Jun.
	2019, doi: 10.1016/j.jisa.2019.03.004.
[4]	A. Ustubioglu and G. Ulutas, ``A new medical image watermarking tech- nique with
	_ner tamper localization," J. Digit. Imag., vol. 30, no. 6, pp. 665_680, Dec. 2017.
[5]	H. Nyeem, W. Botes, and C. Boyd, ``A review of medical image water- marking
	requirements for technology," J. Digit. Imag., vol. 26, no. 2, pp. 326_343, 2013.
[6]	S. Alam, A. Jamil, A. Saldhi, and M. Ahmad, ``Digital image authentication and
	encryption using digital signature," in Proc. Int. Conf. Adv. Comput. Eng. Appl.
	(ICACEA), Ghaziabad, India, Mar. 2015, pp. 332_336.
[7]	O. Hemida and H. He, ``A self-recovery watermarking scheme based on block
	truncation coding and quantum chaos map," Multimedia Tools Appl., vol. 79, pp.
	18695_18725, Jan. 2020, doi: 10.1007/s11042-020-08727-7.

[8]	J. Molina-Garcia, B. P. Garcia-Salgado, V. Ponomaryov, R. Reyes-Reyes, S.
	Sadovnychiy, and C. Cruz-Ramos, ``An effective fragile watermarking scheme for
	color image tampering detection and self-recovery," Signal Process., Image Commun.,
	vol. 81, Feb. 2020, Art. no. 115725.
[9]	O. M. Al-Qershi and B. E. Khoo, ``Authentication and data hiding using a reversible
	ROI-based watermarking scheme for DICOM images," in Proc. Int. Conf. Med. Syst.
	Eng. (ICMSE), 2009, pp. 829_834.
[10]	X. Deng, Z. Chen, F. Zeng, Y. Zhang, and Y. Mao, ``Authentication and recovery of
	medical diagnostic image using dual reversible digital watermarking," J. Nanosci.
	Nanotechnol., vol. 13, no. 3, pp. 2099_2107, Mar. 2013.
[11]	X. Luo, Q. Cheng, and J. Tan, ``A lossless data embedding scheme for medical images
	in application of e-diagnosis," in Proc. 25th Annu. Int. Conf. IEEE Eng. Med. Biol.
	Soc., Sep. 2003, pp. 852_855.
[12]	N. A. Memon and A. Alzahrani, "Prediction-Based Reversible Watermarking of CT
	Scan Images for Content Authentication and Copyright Protection," in IEEE Access,
	vol. 8, pp. 75448-75462, 2020, doi: 10.1109/ACCESS.2020.2989175.
[13]	X. Liu et al., "A Novel Robust Reversible Watermarking Scheme for Protecting
	Authenticity and Integrity of Medical Images," in IEEE Access, vol. 7, pp. 76580-
	76598, 2019, doi: 10.1109/ACCESS.2019.2921894.
[14]	GD. Su, CC. Chang and CC. Lin, "Effective Self-Recovery and Tampering
	Localization Fragile Watermarking for Medical Images," in IEEE Access, vol. 8, pp.
	160840-160857, 2020, doi: 10.1109/ACCESS.2020.3019832.
[15]	J. Liu, J. Ma, J. Li, M. Huang, N. Sadiq and Y. Ai, "Robust Watermarking Algorithm
	for Medical Volume Data in Internet of Medical Things," in IEEE Access, vol. 8, pp.
	93939-93961, 2020, doi: 10.1109/ACCESS.2020.2995015.
[16]	O. Evsutin, A. Melman and R. Meshcheryakov, "Digital Steganography and
	Watermarking for Digital Images: A Review of Current Research Directions," in IEEE
	Access, vol. 8, pp. 166589-166611, 2020, doi: 10.1109/ACCESS.2020.3022779.
[17]	S. A. Parah et al., "Efficient Security and Authentication for Edge-based Internet of
	Medical Things," in IEEE Internet of Things Journal, doi:
[10]	10.1109/JIOT.2020.3038009.
[18]	B. Hassan, R. Ahmed, B. Li and O. Hassan, "An Imperceptible Medical Image
	Watermarking Framework for Automated Diagnosis of Retinal Pathologies in an
	eneatur Arrangement, in IEEE Access, vol. /, pp. 09/58-09/75, 2019, doi:
[10]	10.1109/ACCESS.2019.2919381.
[17]	O. F. Siduiqui et al., A Dynamic Three-Bit Image Steganography Algorithm for Modical and a Haalthaara Systems " in IEEE Access vol. 8, pp. 181802 181002 2020
	d_{0} : 10 1100/ACCESS 2020 2028215
[20]	V Cao, V. Zhou and L. M. Cuo, "Guest Editorial Introduction to Special Section on
[20]	A. Cao, 1. Zhou and JW. Guo, Guest Editorial Introduction to Special Section on Modern Payersible Data Hiding and Watermarking " in IEEE Transactions on Circuita
	would reversible Data muning and watermarking, in IEEE Transactions on Circuits

	and Systems for Video Technology, vol. 30, no. 8, pp. 2297-2299, Aug. 2020, doi:
	10.1109/TCSVT.2020.3002109.
[21]	X. Yan, Y. Lu, L. Liu and X. Song, "Reversible Image Secret Sharing," in IEEE
	Transactions on Information Forensics and Security, vol. 15, pp. 3848-3858, 2020, doi:
	10.1109/TIFS.2020.3001735.
[22]	P. Eze, U. Parampalli, R. Evans and D. Liu, "A New Evaluation Method for Medical
	Image Information Hiding Techniques*," 2020 42nd Annual International Conference
	of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC,
	Canada, 2020, pp. 6119-6122, doi: 10.1109/EMBC44109.2020.9176066.
[23]	Zarrabi, H., Emami, A., Khadivi, P. et al. Bless Mark: a blind diagnostically-lossless
	watermarking framework for medical applications based on deep neural networks.
	Multimed Tools Appl 79, 22473–22495 (2020). https://doi.org/10.1007/s11042-020-
	08698-9
[24]	S. Maheshkar, ``Region-based hybrid medical image watermarking for secure
	telemedicine applications," Multimedia Tools Appl., vol. 76, no. 3, pp. 3617_3647,
	Feb. 2017.
[25]	R. Thabit and B. E. Khoo, ``Medical image authentication using SLT and IWT
	schemes," Multimedia Tools Appl., vol. 76, no. 1, pp. 309_332, Jan. 2017.
[26]	B. Lei, EL. Tan, S. Chen, D. Ni, T. Wang, and H. Lei, ``Reversible watermarking
	scheme for medical image based on differential evolution," Expert Syst. Appl., vol. 41,
	no. 7, pp. 3178_3188, Jun. 2014.
[27]	R. Thabit and B. E. Khoo, ``A new robust lossless data hiding scheme and its
	application to color medical images," Digit. Signal Process., vol. 38, pp. 77_94, Mar.
	2015.